Bladder - Prostate Rhabdomyosarcoma: The radiotherapists view

Dr Henry Mandeville
Children’s and Young People’s Unit

4th October 2012
Outline of talk

- Local Control in Bladder-Prostate RMS
- What is the role for Radiotherapy?
- Choosing between techniques
Bladder-Prostate RMS

- Localised ERMS
  - 5yr FFS 75% and OS 84%
  - Treatment failures 60% local

- Localised non-ERMS
  - 5yr FFS and OS 47%

- Metastatic RMS
  - 5yr FFS 41% and OS 44%

Rodeberg et al. Int J Cancer 2011
What is the role for radiotherapy

- IRS-II Trial
  - RT given after 8 weeks chemo
  - 5-year FFS of 58% and OS of 72%

- SIOP/ICG protocols
  - RT for poor response to initial chemo
  - Similar outcomes to IRS-II

- CWS-96 trial
  - Preop RT or primary RT: OS 88%
  - Incomplete surgery +/- RT: OS 40%
Efficacy versus late effects

Combined modality therapy
Late sequelae

- Radiation induced fibrosis
- Increases with increasing RT dose

- Bladder dysfunction
- 17% of patients receiving <40 Gy having dysfunction versus 61% receiving >40 Gy.

Current radiotherapy techniques
3D and beyond...

- Transition from
  - 3D Conformal

- To
  - IMRT
Improving conformality

- Changing intensity across the beam
  - Intensity modulated radiotherapy
  - Inverse-planned
    - sliding window step and shoot
Conformality
What is the role for Intensity Modulated Radiotherapy?

Pros

- Improved dose conformity and homogeneity
- Greater sparing of Organs at risk (OAR)
- Concomitant boost
- Available in UK
What is the role for Intensity Modulated Radiotherapy?

**Pros**
- Greater sparing of Organs at risk (OAR)
- Concomitant boost
- Improved dose conformity and homogeneity
- Available in UK

**Cons**
- Low dose bath effect
- Potential for increased second cancers
Which technique- fixed field vs arc?

- Intensity Modulated Arc Therapy (IMAT)
- Rotational cone beams with gantry motion during beam on
- Ability to vary MLC aperture, dose rate and gantry speed
- Similar conformity to fixed field IMRT

- Potential benefits in Paediatrics
  - Reduced Monitor Units
  - Faster treatment delivery
Localised ERMS prostate-bladder base

- High risk group B
- Radical prostatectomy
  - +ve margins
- Radical RT: IMAT
Metastatic ERMS

- Large pelvic tumour with para-aortic, left suprarenal and left cervical LNs
- BERNIE study
  - IVADo
- Surgical resection of pelvic mass
- Macroscopic residual disease internal iliac vessels
Principles for approval and funding of Proton Therapy abroad in UK

- Curative Intent
- Good PFS
- No coincident diagnoses likely to limit 5yr survival
- No metastatic disease

- Rhabdomyosarcoma
- Orbit
- Parameningeal and Head & Neck
- Pelvis
- Age <16years
Why protons?
Why protons?

- Proton radiotherapy compared to IMRT
- Single centre series
- Significant decrease in mean organ dose
  - bladder (25.1 CGE vs. 33.2 Gy; p=0.03)
  - testes (0.0 CGE vs. 0.6 Gy; p=0.016)
  - femoral heads (1.6 CGE vs. 10.6 Gy; p=0.016)
  - growth plates (21.7 CGE vs. 32.4 Gy; p=0.016)
  - pelvic bones (8.8 CGE vs. 13.5 Gy; p=0.016)

*Cotter et al. IJROBP 2011*
Conclusions

- EBRT remains an important component in the treatment of BP RMS
- Dosimetric benefits with IMAT/ IMRT
  - Improved sparing of OAR
  - BUT potential increase in risk of second cancers
- Definite role for metastatic disease
- Need to balance cure with potential late effects
- Potential benefits with Proton beam radiotherapy or Brachytherapy